
Modified Porter Stemming Algorithm
Atharva Joshi1, Nidhin Thomas2, Megha Dabhade3

1,2,3M.Tech, Department of Computer Science and Engineering
Vellore Institute of Technology

Vellore, India

Abstract— Stemming is a critical component in the pre-
processing stage of Text Mining. It is an inter-disciplinary
process which finds applications in Natural Language
Processing and Information Retrieval systems, especially
search engines. It is used to relate index and search terms that
are morphologically similar. It provides reduction in the size
of indexing files and improved information retrieval
effectiveness by increasing the recall rate and giving us the
most relevant results. In stemming, different forms of a word
like its noun, adjectives, verb, adverbs are reduced to its root
form. There are several different approaches to stemming;
table lookup, affix removal, successor variety, and n-gram,
each having their own advantages and limitations. In this
paper, we propose a modified version of the Porter stemmer
in an effort to overcome some of its limitations and equip it
with features that will make it more useful in information
retrieval.

Keywords— Porter Stemmer, Stemming Algorithms, Text
Mining, Information Retrieval, Text Pre-processing

I. INTRODUCTION

With the dawn of the digital age, there has been an
exponential increase in data, the majority of which is in
text form. This calls for sophisticated information retrieval
and text mining algorithms to enable one to filter out the
relevant information from the junk, within the large
collection of available data. However, the most crucial
factors in effective information retrieval are speed and
precision (relevance). The huge demand for improvement
in this area has driven the development of linguistic
morphological techniques such as stemming and
lemmatization.
Stemming, in its simplest definition is the process of
reducing an inflated or derived word to its stem, root or
base form by removing the attached affixes. [1][14] This
process is also referred to as conflation. The stem is
obtained after applying a set of rules on the word, as
opposed to lemmatizing which deals with the complex
process of dealing with the part of speech of a word and its
context within the sentence to obtain the lemma. Stemming
makes it possible to reduce words with same roots into a
single stem, thereby drastically improving the effectiveness
of information retrieval and text mining by reducing the
indexing size by up to 40-50%. Two key points to be
considered while implementing a stemming algorithm are:
1. Morphological variants of a word are presupposed to

have similar meanings and should be mapped to the
same stem

2. Words that that are etymologically similar but sharply
differ in meaning should not be mapped to the same
stem

Thus, stemming errors can be mainly classified into two.
Under-stemming in which words that refer to the same
concept are not reduced to the same stem and Over-
stemming in which words are converted to the same stem
even when they have distinctly different meanings.
[2][3][9][11] A heavy stemming algorithm might
aggressively pursue the removal of affixes, resulting in
incorrect stems. On the other hand, a light stemming
algorithm, in an attempt to avoid over-stemming might end
up causing several under-stemming errors. Designing an
efficient stemming algorithm, is often a question of finding
the perfect balance between these two extremes.

II. RELATED WORK

Stemming algorithms follow several different approaches
such as truncation, statistical methods and
inflectional/derivational techniques, with several
algorithms under each approach. [1]
Truncation Stemmers: They create a stem by removing
the affixes associated with it.
1. The Porter Stemmer: It is one of the most commonly

used truncation stemmers. It removes affixes from a word
over a number of iterations until all the rules/conditions
are considered. As it operates without a lexicon and does
not consider word meanings, it is subject to certain errors.
[4][5][10][15] Words with different meanings are
reduced to the same stem (E.g.: “generic” and
“generation” are stemmed to “gener”), while words with
similar meanings may not be reduced to a common stem
at all (E.g.: “recognition” and “recognize”). Besides, the
produced stem may not be a valid word. In spite of these
issues, the analysis of the Porter stemmer has shown that
its performance is one of the best in terms of IR
recall/precision.

2. Lovins Stemmer: The first popular and effective stemmer
proposed by Lovins in 1968. It performs a lookup on a
table of 294 endings, 29 conditions and 35 transformation
rules, which have been arranged on a longest match
principle. [6] It removes the longest suffix from a word,
is very fast and can handle removal of double letters in
words but it consumes a lot of time and is highly
unreliable.

3. Paice/Husk Stemmer: It is an iterative algorithm with one
table containing about 120 rules indexed by the last letter
of a suffix. [8] It tries to find an applicable rule which
specifies either a deletion or replacement of an ending
over each iteration. If no such rule is found, it terminates.
The advantage is its simple and every iteration taking
care of both deletion and replacement as per the rule
applied. But being a very heavy algorithm and over
stemming may occur.

Atharva Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 266-269

www.ijcsit.com 266

Statistical Stemmers: They remove affixes after
subjecting it to some statistical procedure.
1. N-gram Stemmer: Words are conflated to their stem

using a string-similarity approach. N-gram is a set of n
consecutive characters extracted from a word. Words
that are similar will have a high proportion of n-grams
in common hence they can be converted to same stem.
It is language independent and hence very useful in
many applications but it requires a significant amount
of memory and storage for creating and storing the n-
grams and indexes. [1]

2. HMM Stemmer: This stemmer is based on the concept
of the Hidden Markov Model (HMMs) [7] which are
finite-state automata where transitions between states
are ruled by probability functions. This method is
based on unsupervised learning hence it is language
independent. Disadvantage is complex and may over
stem words.

3. YASS Stemmer: It stands for yet another Suffix
Striper. This is a category of statistical as well as
corpus based. The clusters are created using
hierarchical approach and distance measures. [12] It
can be used for any language without knowing its
morphology. Difficult to decide threshold for creating
clusters. Requires significant computing power.

Inflectional/Derivational Stemmers: Inflectional
methods relate the different forms of words to their tense,
gender, case etc., while derivational methods deals with
relating the variations of words to the part-of-speech (POS)
of a sentence where the word occurs.
1. The Krovetz or K-STEM algorithm: It addresses many

of the problems with the Porter stemmer using a
digital dictionary and well defined rules for
inflectional and derivational morphology. As it heavily
depends upon the contents of its dictionary, its
conflation might end up being conservative. [13] The
constant “look-up” it has to perform during the
execution significantly slows down its speed, thereby
debilitating retrieval performance.

2. Xerox Stemmer: The linguists at Xerox Corporation
created a lexical database for English which helps to
identify the base word using morphological analysis of
the word in the lexicon. [5] It works well with a large
documents and removes the prefixes with a valid stem.
On the other hand, its dependence on the lexicon
makes it a language dependent stemmer.

3. Corpus Based: Conflation classes are automatically
modified to overcome problems in Porter algorithm.
The significance of word form co-occurrence can be
determined by the statistical measure [15] given by
Em (a, b) = nab / (na + nb) where, a and b are a pair of
words, na and nb are the number of occurrences of a
and b in the corpus, nab is the number of times both a
and b fall in a text window of size win in the corpus.
This method can potentially avoid making conflations
that are not appropriate for a given corpus and the
result is a real word stem. It is complex and hence
processing time increases.

III. METHODOLOGY

Porter stemming algorithm is based on the idea that the
suffixes in the English language are mostly made up of a
combination of smaller and simpler suffixes. It has six
steps, and within each step, rules are applied until one of
them passes the conditions. If a rule is accepted, the suffix
is removed accordingly, and the next step is performed.
The resultant stem at the end of the sixth step is returned.
The main drawback of the Porter algorithm is that the
resultant stems produced are not always real words.
Another stemming algorithm, the Krovetz stemmer tries to
overcome this drawback in the following way. It first
removes the suffix and then puts the word through a
dictionary checking process for any potential recoding
before returning the stem. The dictionary lookup also
performs any transformations that are required due to
spelling exception and also converts any stem produced
into a real word, whose meaning can be understood.
However, this process is tedious, consumes a lot of
memory, creates unnecessary overheads and slows down
the stemming process significantly. On the other hand,
converting a stem to a real word does not have any
significant real word advantages, besides making it easier
for the user at the back end to get a better grasp of the
stemming process.
A better approach would be to maintain a relationship table
comprising of the inverse relation between stems and the
input words. So each stem will return all the words which
have resulted in that stem. Thus whenever the algorithm
returns a stem that is vague or ambiguous, all one needs to
do is look it up with the original words from which the
stem has been derived. This eliminates the need of storing
thousands of words in a dictionary file and comparing the
stem with each of those. Our method has substantial
advantages in terms of speed and memory requirement
compared to the dictionary look-up method. Additionally,
our algorithm will also return the word count of the input
words, which can be used in the ranking process (Term
Frequency [TF]/Inverse Document Frequency [IDF]) of
search engines.
Shown below is the traditional Porter stemming algorithm:

Fig. 1. Porter stemming algorithm

Atharva Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 266-269

www.ijcsit.com 267

The removal of stop-words and duplicates is another
function that the current Porter stemming algorithm does
not address. Stop-words make up a significant portion of
most text corpora and stemming these would only slow
down the stemming process without contributing anything
towards indexing or query expansion. Thus the prelude to
our algorithm would be to define a strict entry condition
for input words to prevent the stop words and duplicates of
a given word from being considered for stemming.
Stemming algorithms in general have not kept up with the
current linguistic trends. No rules have been defined to
stem hyphenated words, email addresses and website
names. We have devised rules to address these issues as
well.
Thus to summarize, the following improvements have been
made to the Porter stemmer:
1. A word count feature, which gives the number of

occurrences of a word in the input text file.
2. Function to ensure that the duplicate of a given word

will not be stemmed.
3. A reverse relation table showing the words from

which the stems have been derived.
4. Function to remove the stop words from the input text

file.
5. Addition of the rules to address the following:

a. Hyphenated words
b. Words with apostrophe
c. Email addresses
d. Websites

IV. RESULTS AND DISCUSSION

Data Set: The text corpus considered to test the
effectiveness of the new algorithm has been taken from the
Leipzig corpora collection maintained by Wortschatz
University, Leipzig. It is a collection of news stories that
have been randomly selected from the year 2010. It
contains about 30K words stored in plain-text format.

Fig. 2. Sample text from Leipzig corpora

Fig. 2. Shows a sample input text taken from the Leipzig
corpora. On feeding this input to our new and improved
stemming algorithm, the result will be as follows:

Fig. 3. Output of the stemming algorithm

As evident from the above figure, the output shows the
stemmed word, the word from which the stem has been
derrived and the number of times the original word occurs
in the input text file.

CONCLUSION AND FUTURE SCOPE

Our proposed algorithm shows significant improvements
in terms of scope and efficiency as compared to the current
Porter stemming algorithm. With the semiconductor
industry’s shift to multi-core processors, parallel
computing and more specifically high performance
computing is emerging as the prevalent computing
paradigm. However, current stemming algorithms have
not kept up with this trend. A stemmer that is capable of
leveraging the massive capabilities of parallel processing,
making use of multiple CPU cores can perform efficiently
with increased throughput, which will lead to a tremendous

Atharva Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 266-269

www.ijcsit.com 268

increase in speed of the stemming process. One could also
formulate additional rules based on the frequent exceptions
and stemming errors encountered to improve the
correctness and reliability of the algorithm. Our algorithm
can be scaled to stem words in other Indo-European
languages, provided one has a thorough understanding of
their grammatical structure and lexicon.

REFERENCES
[1] Anjali Ganesh Jivani, “A Comparative Study of Stemming

Algorithms”, in Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938,
2011

[2] Eiman Tamah Al-Shammari, “Towards An ErrorFree Stemming”,
in Proceedings of ADIS European Conference Data Mining 2008,
pp. 160-163.

[3] Frakes William B. “Strength and similarity of affix removal
stemming algorithms”. ACM SIGIR Forum, Volume 37, No. 1.
2003, 26-30.

[4] Harman, D. (1991). “How effective is suffixing?” Journal of the
American Society for Information Science, 42(7), 7-15.

[5] Hull D. A. and Grefenstette. “A detailed analysis of English
Stemming Algorithms”, XEROX Technical Report,
http://www.xrce.xerox.

[6] J. B. Lovins, “Development of a stemming algorithm,” Mechanical
Translation and Computer Linguistic., vol.11, no.1/2, pp. 22-31,
1968.

[7] Melucci Massimo and Orio Nicola. “A novel method for stemmer
generation based on hidden Markov models”. Proceedings of the
twelfth international conference on Information and knowledge
management. 2003, 131-138.

[8] Paice Chris D. “Another stemmer”. ACM SIGIR Forum, Volume
24, No. 3. 1990, 56-61.

[9] Paice Chris D. “An evaluation method for stemming algorithms”.
Proceedings of the 17th annual international ACM SIGIR
conference on Research and development in information retrieval.
1994, 4250.

[10] Porter M.F. “An algorithm for suffix stripping”. Program. 1980; 14,
130-137.

[11] Porter M.F. “Snowball: A language for stemming algorithms”.
2001.

[12] Prasenjit Majumder, Mandar Mitra, Swapan K. Parui, Gobinda
Kole, Pabitra Mitra and Kalyankumar Datta. “YASS: Yet another
suffix stripper”. ACM Transactions on Information Systems.
Volume 25, Issue 4. 2007, Article No: 18

[13] Robert Krovetz. “Viewing morphology as an inference process.” In
Proc. of the 16th ACM/SIGIR Conference, pages 191-202, 1993.

[14] Toman Michal, Tesar Roman and Jezek Karel. “Influence of word
normalization on text classification”. The 1st International
Conference on Multidisciplinary Information Sciences &
Technologies. 2006, 354-358.

[15] Xu Jinxi and Croft Bruce W. “Corpus-based stemming using co-
occurrence of word variants”. ACM Transactions on Information
Systems. Volume 16, Issue 1. 1998, 61-81

Atharva Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 266-269

www.ijcsit.com 269

